/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* AES implementation in JavaScript (c) Chris Veness 2005-2014 / MIT Licence */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* jshint node:true *//* global define */ /** * AES (Rijndael cipher) encryption routines, * * Reference implementation of FIPS-197 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. * * @namespace */ var Aes = {}; /** * AES Cipher function: encrypt 'input' state with Rijndael algorithm [§5.1]; * applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage. * * @param {number[]} input - 16-byte (128-bit) input state array. * @param {number[][]} w - Key schedule as 2D byte-array (Nr+1 x Nb bytes). * @returns {number[]} Encrypted output state array. */ Aes.cipher = function (input, w) { const Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) const Nr = w.length / Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys let state = [[], [], [], []]; // initialise 4xNb byte-array 'state' with input [§3.4] for (var i = 0; i < 4 * Nb; i++) state[i % 4][Math.floor(i / 4)] = input[i]; state = Aes.addRoundKey(state, w, 0, Nb); for (let round = 1; round < Nr; round++) { state = Aes.subBytes(state, Nb); state = Aes.shiftRows(state, Nb); state = Aes.mixColumns(state, Nb); state = Aes.addRoundKey(state, w, round, Nb); } state = Aes.subBytes(state, Nb); state = Aes.shiftRows(state, Nb); state = Aes.addRoundKey(state, w, Nr, Nb); const output = new Array(4 * Nb); // convert state to 1-d array before returning [§3.4] for (var i = 0; i < 4 * Nb; i++) output[i] = state[i % 4][Math.floor(i / 4)]; return output; }; /** * Perform key expansion to generate a key schedule from a cipher key [§5.2]. * * @param {number[]} key - Cipher key as 16/24/32-byte array. * @returns {number[][]} Expanded key schedule as 2D byte-array (Nr+1 x Nb bytes). */ Aes.keyExpansion = function (key) { const Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) const Nk = key.length / 4; // key length (in words): 4/6/8 for 128/192/256-bit keys const Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys const w = new Array(Nb * (Nr + 1)); let temp = new Array(4); // initialise first Nk words of expanded key with cipher key for (var i = 0; i < Nk; i++) { const r = [key[4 * i], key[4 * i + 1], key[4 * i + 2], key[4 * i + 3]]; w[i] = r; } // expand the key into the remainder of the schedule for (var i = Nk; i < (Nb * (Nr + 1)); i++) { w[i] = new Array(4); for (var t = 0; t < 4; t++) temp[t] = w[i - 1][t]; // each Nk'th word has extra transformation if (i % Nk == 0) { temp = Aes.subWord(Aes.rotWord(temp)); for (var t = 0; t < 4; t++) temp[t] ^= Aes.rCon[i / Nk][t]; } // 256-bit key has subWord applied every 4th word else if (Nk > 6 && i % Nk == 4) { temp = Aes.subWord(temp); } // xor w[i] with w[i-1] and w[i-Nk] for (var t = 0; t < 4; t++) w[i][t] = w[i - Nk][t] ^ temp[t]; } return w; }; /** * Apply SBox to state S [§5.1.1] * @private */ Aes.subBytes = function (s, Nb) { for (let r = 0; r < 4; r++) { for (let c = 0; c < Nb; c++) s[r][c] = Aes.sBox[s[r][c]]; } return s; }; /** * Shift row r of state S left by r bytes [§5.1.2] * @private */ Aes.shiftRows = function (s, Nb) { const t = new Array(4); for (let r = 1; r < 4; r++) { for (var c = 0; c < 4; c++) t[c] = s[r][(c + r) % Nb]; // shift into temp copy for (var c = 0; c < 4; c++) s[r][c] = t[c]; // and copy back } // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): return s; // see asmaes.sourceforge.net/rijndael/rijndaelImplementation.pdf }; /** * Combine bytes of each col of state S [§5.1.3] * @private */ Aes.mixColumns = function (s, Nb) { for (let c = 0; c < 4; c++) { const a = new Array(4); // 'a' is a copy of the current column from 's' const b = new Array(4); // 'b' is a•{02} in GF(2^8) for (let i = 0; i < 4; i++) { a[i] = s[i][c]; b[i] = s[i][c] & 0x80 ? s[i][c] << 1 ^ 0x011b : s[i][c] << 1; } // a[n] ^ b[n] is a•{03} in GF(2^8) s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // {02}•a0 + {03}•a1 + a2 + a3 s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 • {02}•a1 + {03}•a2 + a3 s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + {02}•a2 + {03}•a3 s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // {03}•a0 + a1 + a2 + {02}•a3 } return s; }; /** * Xor Round Key into state S [§5.1.4] * @private */ Aes.addRoundKey = function (state, w, rnd, Nb) { for (let r = 0; r < 4; r++) { for (let c = 0; c < Nb; c++) state[r][c] ^= w[rnd * 4 + c][r]; } return state; }; /** * Apply SBox to 4-byte word w * @private */ Aes.subWord = function (w) { for (let i = 0; i < 4; i++) w[i] = Aes.sBox[w[i]]; return w; }; /** * Rotate 4-byte word w left by one byte * @private */ Aes.rotWord = function (w) { const tmp = w[0]; for (let i = 0; i < 3; i++) w[i] = w[i + 1]; w[3] = tmp; return w; }; // sBox is pre-computed multiplicative inverse in GF(2^8) used in subBytes and keyExpansion [§5.1.1] Aes.sBox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16]; // rCon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] Aes.rCon = [[0x00, 0x00, 0x00, 0x00], [0x01, 0x00, 0x00, 0x00], [0x02, 0x00, 0x00, 0x00], [0x04, 0x00, 0x00, 0x00], [0x08, 0x00, 0x00, 0x00], [0x10, 0x00, 0x00, 0x00], [0x20, 0x00, 0x00, 0x00], [0x40, 0x00, 0x00, 0x00], [0x80, 0x00, 0x00, 0x00], [0x1b, 0x00, 0x00, 0x00], [0x36, 0x00, 0x00, 0x00]]; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ if (typeof module !== 'undefined' && module.exports) module.exports = Aes; // CommonJs export if (typeof define === 'function' && define.amd) define([], () => Aes); // AMD /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* AES Counter-mode implementation in JavaScript (c) Chris Veness 2005-2014 / MIT Licence */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* jshint node:true *//* global define, escape, unescape, btoa, atob */ 'use strict'; if (typeof module !== 'undefined' && module.exports) var Aes = require('./aes'); // CommonJS (Node.js) /** * Aes.Ctr: Counter-mode (CTR) wrapper for AES. * * This encrypts a Unicode string to produces a base64 ciphertext using 128/192/256-bit AES, * and the converse to decrypt an encrypted ciphertext. * * See http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf * * @augments Aes */ Aes.Ctr = {}; /** * Encrypt a text using AES encryption in Counter mode of operation. * * Unicode multi-byte character safe * * @param {string} plaintext - Source text to be encrypted. * @param {string} password - The password to use to generate a key. * @param {number} nBits - Number of bits to be used in the key; 128 / 192 / 256. * @returns {string} Encrypted text. * * @example * var encr = Aes.Ctr.encrypt('big secret', 'pāşšŵōřđ', 256); // encr: 'lwGl66VVwVObKIr6of8HVqJr' */ Aes.Ctr.encrypt = function (plaintext, password, nBits) { const blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES if (!(nBits == 128 || nBits == 192 || nBits == 256)) return ''; // standard allows 128/192/256 bit keys plaintext = String(plaintext).utf8Encode(); password = String(password).utf8Encode(); // use AES itself to encrypt password to get cipher key (using plain password as source for key // expansion) - gives us well encrypted key (though hashed key might be preferred for prod'n use) const nBytes = nBits / 8; // no bytes in key (16/24/32) const pwBytes = new Array(nBytes); for (var i = 0; i < nBytes; i++) { // use 1st 16/24/32 chars of password for key pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i); } let key = Aes.cipher(pwBytes, Aes.keyExpansion(pwBytes)); // gives us 16-byte key key = key.concat(key.slice(0, nBytes - 16)); // expand key to 16/24/32 bytes long // initialise 1st 8 bytes of counter block with nonce (NIST SP800-38A §B.2): [0-1] = millisec, // [2-3] = random, [4-7] = seconds, together giving full sub-millisec uniqueness up to Feb 2106 const counterBlock = new Array(blockSize); const nonce = (new Date()).getTime(); // timestamp: milliseconds since 1-Jan-1970 const nonceMs = nonce % 1000; const nonceSec = Math.floor(nonce / 1000); const nonceRnd = Math.floor(Math.random() * 0xffff); // for debugging: nonce = nonceMs = nonceSec = nonceRnd = 0; for (var i = 0; i < 2; i++) counterBlock[i] = (nonceMs >>> i * 8) & 0xff; for (var i = 0; i < 2; i++) counterBlock[i + 2] = (nonceRnd >>> i * 8) & 0xff; for (var i = 0; i < 4; i++) counterBlock[i + 4] = (nonceSec >>> i * 8) & 0xff; // and convert it to a string to go on the front of the ciphertext let ctrTxt = ''; for (var i = 0; i < 8; i++) ctrTxt += String.fromCharCode(counterBlock[i]); // generate key schedule - an expansion of the key into distinct Key Rounds for each round const keySchedule = Aes.keyExpansion(key); const blockCount = Math.ceil(plaintext.length / blockSize); const ciphertxt = new Array(blockCount); // ciphertext as array of strings for (let b = 0; b < blockCount; b++) { // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) // done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB) for (var c = 0; c < 4; c++) counterBlock[15 - c] = (b >>> c * 8) & 0xff; for (var c = 0; c < 4; c++) counterBlock[15 - c - 4] = (b / 0x100000000 >>> c * 8); const cipherCntr = Aes.cipher(counterBlock, keySchedule); // -- encrypt counter block -- // block size is reduced on final block const blockLength = b < blockCount - 1 ? blockSize : (plaintext.length - 1) % blockSize + 1; const cipherChar = new Array(blockLength); for (var i = 0; i < blockLength; i++) { // -- xor plaintext with ciphered counter char-by-char -- cipherChar[i] = cipherCntr[i] ^ plaintext.charCodeAt(b * blockSize + i); cipherChar[i] = String.fromCharCode(cipherChar[i]); } ciphertxt[b] = cipherChar.join(''); } // use Array.join() for better performance than repeated string appends let ciphertext = ctrTxt + ciphertxt.join(''); ciphertext = ciphertext.base64Encode(); return ciphertext; }; /** * Decrypt a text encrypted by AES in counter mode of operation * * @param {string} ciphertext - Source text to be encrypted. * @param {string} password - Password to use to generate a key. * @param {number} nBits - Number of bits to be used in the key; 128 / 192 / 256. * @returns {string} Decrypted text * * @example * var decr = Aes.Ctr.encrypt('lwGl66VVwVObKIr6of8HVqJr', 'pāşšŵōřđ', 256); // decr: 'big secret' */ Aes.Ctr.decrypt = function (ciphertext, password, nBits) { const blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES if (!(nBits == 128 || nBits == 192 || nBits == 256)) return ''; // standard allows 128/192/256 bit keys ciphertext = String(ciphertext).base64Decode(); password = String(password).utf8Encode(); // use AES to encrypt password (mirroring encrypt routine) const nBytes = nBits / 8; // no bytes in key const pwBytes = new Array(nBytes); for (var i = 0; i < nBytes; i++) { pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i); } let key = Aes.cipher(pwBytes, Aes.keyExpansion(pwBytes)); key = key.concat(key.slice(0, nBytes - 16)); // expand key to 16/24/32 bytes long // recover nonce from 1st 8 bytes of ciphertext const counterBlock = new Array(8); const ctrTxt = ciphertext.slice(0, 8); for (var i = 0; i < 8; i++) counterBlock[i] = ctrTxt.charCodeAt(i); // generate key schedule const keySchedule = Aes.keyExpansion(key); // separate ciphertext into blocks (skipping past initial 8 bytes) const nBlocks = Math.ceil((ciphertext.length - 8) / blockSize); const ct = new Array(nBlocks); for (var b = 0; b < nBlocks; b++) ct[b] = ciphertext.slice(8 + b * blockSize, 8 + b * blockSize + blockSize); ciphertext = ct; // ciphertext is now array of block-length strings // plaintext will get generated block-by-block into array of block-length strings const plaintxt = new Array(ciphertext.length); for (var b = 0; b < nBlocks; b++) { // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) for (var c = 0; c < 4; c++) counterBlock[15 - c] = ((b) >>> c * 8) & 0xff; for (var c = 0; c < 4; c++) counterBlock[15 - c - 4] = (((b + 1) / 0x100000000 - 1) >>> c * 8) & 0xff; const cipherCntr = Aes.cipher(counterBlock, keySchedule); // encrypt counter block const plaintxtByte = new Array(ciphertext[b].length); for (var i = 0; i < ciphertext[b].length; i++) { // -- xor plaintxt with ciphered counter byte-by-byte -- plaintxtByte[i] = cipherCntr[i] ^ ciphertext[b].charCodeAt(i); plaintxtByte[i] = String.fromCharCode(plaintxtByte[i]); } plaintxt[b] = plaintxtByte.join(''); } // join array of blocks into single plaintext string let plaintext = plaintxt.join(''); plaintext = plaintext.utf8Decode(); // decode from UTF8 back to Unicode multi-byte chars return plaintext; }; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /** Extend String object with method to encode multi-byte string to utf8 * - monsur.hossa.in/2012/07/20/utf-8-in-javascript.html */ if (typeof String.prototype.utf8Encode === 'undefined') { String.prototype.utf8Encode = function () { return unescape(encodeURIComponent(this)); }; } /** Extend String object with method to decode utf8 string to multi-byte */ if (typeof String.prototype.utf8Decode === 'undefined') { String.prototype.utf8Decode = function () { try { return decodeURIComponent(escape(this)); } catch (e) { return this; // invalid UTF-8? return as-is } }; } /** Extend String object with method to encode base64 * - developer.mozilla.org/en-US/docs/Web/API/window.btoa, nodejs.org/api/buffer.html * note: if btoa()/atob() are not available (eg IE9-), try github.com/davidchambers/Base64.js */ if (typeof String.prototype.base64Encode === 'undefined') { String.prototype.base64Encode = function () { if (typeof btoa !== 'undefined') return btoa(this); // browser if (typeof Buffer !== 'undefined') return new Buffer(this, 'utf8').toString('base64'); // Node.js throw new Error('No Base64 Encode'); }; } /** Extend String object with method to decode base64 */ if (typeof String.prototype.base64Decode === 'undefined') { String.prototype.base64Decode = function () { if (typeof atob !== 'undefined') return atob(this); // browser if (typeof Buffer !== 'undefined') return new Buffer(this, 'base64').toString('utf8'); // Node.js throw new Error('No Base64 Decode'); }; } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ if (typeof module !== 'undefined' && module.exports) module.exports = Aes.Ctr; // CommonJs export if (typeof define === 'function' && define.amd) define(['Aes'], () => Aes.Ctr); // AMD /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Encrypt/decrypt files */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ function encryptFile(file) { // use FileReader.readAsArrayBuffer to handle binary files const reader = new FileReader(); reader.readAsArrayBuffer(file); reader.onload = function (evt) { $('body').css({ cursor: 'wait' }); // Aes.Ctr.encrypt expects a string, but converting binary file directly to string could // give invalid Unicode sequences, so convert bytestream ArrayBuffer to single-byte chars const contentBytes = new Uint8Array(reader.result); // ≡ evt.target.result let contentStr = ''; for (let i = 0; i < contentBytes.length; i++) { contentStr += String.fromCharCode(contentBytes[i]); } const password = $('#password-file').val(); const t1 = new Date(); const ciphertext = Aes.Ctr.encrypt(contentStr, password, 256); const t2 = new Date(); // use Blob to save encrypted file const blob = new Blob([ciphertext], { type: 'text/plain' }); const filename = `${file.name}.encrypted`; saveAs(blob, filename); $('#encrypt-file-time').html(`${(t2 - t1) / 1000}s`); // display time taken $('body').css({ cursor: 'default' }); }; } function decryptFile(file) { // use FileReader.ReadAsText to read (base64-encoded) ciphertext file const reader = new FileReader(); reader.readAsText(file); reader.onload = function (evt) { $('body').css({ cursor: 'wait' }); const content = reader.result; // ≡ evt.target.result const password = $('#password-file').val(); const t1 = new Date(); const plaintext = Aes.Ctr.decrypt(content, password, 256); const t2 = new Date(); // convert single-byte character stream to ArrayBuffer bytestream const contentBytes = new Uint8Array(plaintext.length); for (let i = 0; i < plaintext.length; i++) { contentBytes[i] = plaintext.charCodeAt(i); } // use Blob to save decrypted file const blob = new Blob([contentBytes], { type: 'application/octet-stream' }); const filename = `${file.name.replace(/\.encrypted$/, '')}.decrypted`; saveAs(blob, filename); $('#decrypt-file-time').html(`${(t2 - t1) / 1000}s`); // display time taken $('body').css({ cursor: 'default' }); }; } export default Aes;